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The Problem

• How can we be sure that we have enough spare resources to 
restart tasks that die due to hardware failure ...

– … while minimizing the resources we need to set aside

– … and considering correlated failures



Google Cloud Structure

• Datacenter

– The actual building we keep our servers

• Cluster

– A set of computers physically colocated within a datacenter, 
sharing the same local network

• Cell

– A fraction of the cluster scheduled by the cell manager



Using a cell

• Users submits a job, composed of multiple tasks

• Each task must specify how much memory, CPU, network, disk it 
needs

• Tasks may also specify constraints on the machines they run

• Jobs may have constraints on how its tasks are distributed

– For example, no more than 5 tasks per rack

• Machines fail or otherwise become unanavailable (e.g. kernel 
update)

– Failures may be correlated (e.g. rack)

• Jobs are written to tolerate task restart (within a reasonable rate)

• We say a task deschedule if we cannot restart it



Admission control for a cell

• We would like to ensure that task descheduling never happens

• We do so by setting up admission control for jobs

• We only admit jobs when we are very confident we can restart its 
tasks

• But, how can we achieve this confidence?

• How can we reserve (the minimal amount of) resources to 
ensure we can withstand a given failure rate?



Backup tasks

• We can precisely compute the probability distribution function 
that x tasks deschedule in a bag of given n tasks

– A bag of tasks is just a set of tasks that is invisible to the user

• This ability enables us to do active risk management

– For a given bag of v tasks, add x backup tasks to the bag, such that 
the probability that no more than x failures out of the total 
n = v + x tasks is less than a chosen threshold

– A backup task is one that can replace any tasks in the bag

– For example, if [ram = 1GB, cpu = 1.0] and [ram = 10MB, cpu = 2.0, 
attrib = value] are in the bag, a backup task must at least have 
[ram = 1GB, cpu = 2.0, attrib = value]



Tasks



Task bags



Adding backup tasks



Probability of x tasks failing in a bag

• We want the probability distribution P(f = x), where f is the 
number of tasks to deschedule in a given task bag B

• Let's start by assuming that:

– No more than one task of bag B run on the same machine

– All tasks of bag B run on a given rack

• We'll remove these assumptions later



Failure probability for a rack

• Let Pr(f = x) be the probability that x tasks deschedule on rack r

• Let p(r) be the probability that rack r fails

• Let p(m|~r) be the probability the machine m fails but the rack r 
that has m has not

• Let R be the number of machines used by bag B in rack r

• We want to compute Pr(f = x) from p(r), p(m|~r), and R

• Pr(f > R) = 0

• Pr(f = R) = p(r) + p(~r)·PIr(f = R)

• Pr(f = x < R) = p(~r)·PIr(f =x)

• PIr(f = x) = Binomial(x, R, p(m|~r))



Two or more tasks in the same machine

• Change the computation PIr(f = x) to consider that each machine 
failing will bring down i tasks 

rack
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Probability of x tasks failing in a bag

• Assuming that racks fail independently, we can just use 
convolutions to add Pr(f = x) up to P(f = x) 

• For example, Pr(f = [01]) = 0.5 and Ps(f = [02]) = 0.5 can be 
combined in P(f = [0123]) = 0.25



On assumptions and failure correlations

• Notice that we can use the same “trick” used for “sub-racks” to 
take into account any other failure correlation that we discover is 
important ...

• ... as well as to use different failure probabilities for different 
machines, racks, or whatever correlates failures



Example: failure probability of a given job



How come???

Machines 744
… with 1 task 32
… with 2 tasks 423
... with 3 tasks 48
... with 4 tasks 241
... with 5+ tasks 0



Bagging heuristic

• submission(S):
for each bag B:

if it is possible to find enough backups for S + B:
cost[B] = BackupCost(S + B) - BackupCost(B)

cost[ALONE] = BackupCost(S)
select the choice that gives the smallest cost and implement it

• Cost captures how many resources are used

• Our experiments showed improvement if we add a penalty for 
being creating a new bag

– cost[ALONE] = K * BackupCost(S)



Selecting a backup task

• The selection of backup task is risk-aware

– We first place a backup task in a new rack (to the bag)

– If there is no new rack, we place it on a new machine

– If there is no new machine, we then collocate it with a sibling

• We try to conserve “resource chunks” when we allocate backup 
tasks

– That is, we use best fit scheduling for placing backup tasks



Bagging performance

• In the bagging of 78,478 submissions

• Mean = 2.90s, median = 1.76s, max = 92.6s



Resource consumed by the backup tasks

• The aggregated memory reservation of backup tasks is 3.16% of 
the memory of real tasks



Conclusions

• Greater utilization creates descheduling risk

• We can manage the descheduling risk by strategically placing 
backup tasks

• This allows us to focus on utilization improvement measures 
without worrying about descheduling risk



Thanks!!!
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