
Managing Descheduling Risk in the Google Cloud

Walfredo Cirne, Geeta Chaudhry, Scott Johnson



The Problem

• How can we be sure that we have enough spare resources to 
restart tasks that die due to hardware failure ...

– … while minimizing the resources we need to set aside

– … and considering correlated failures



Google Cloud Structure

• Datacenter

– The actual building we keep our servers

• Cluster

– A set of computers physically colocated within a datacenter, 
sharing the same local network

• Cell

– A fraction of the cluster scheduled by the cell manager



Using a cell

• Users submits a job, composed of multiple tasks

• Each task must specify how much memory, CPU, network, disk it 
needs

• Tasks may also specify constraints on the machines they run

• Jobs may have constraints on how its tasks are distributed

– For example, no more than 5 tasks per rack

• Machines fail or otherwise become unanavailable (e.g. kernel 
update)

– Failures may be correlated (e.g. rack)

• Jobs are written to tolerate task restart (within a reasonable rate)

• We say a task deschedule if we cannot restart it



Admission control for a cell

• We would like to ensure that task descheduling never happens

• We do so by setting up admission control for jobs

• We only admit jobs when we are very confident we can restart its 
tasks

• But, how can we achieve this confidence?

• How can we reserve (the minimal amount of) resources to 
ensure we can withstand a given failure rate?



Backup tasks

• We can precisely compute the probability distribution function 
that x tasks deschedule in a bag of given n tasks

– A bag of tasks is just a set of tasks that is invisible to the user

• This ability enables us to do active risk management

– For a given bag of v tasks, add x backup tasks to the bag, such that 
the probability that no more than x failures out of the total 
n = v + x tasks is less than a chosen threshold

– A backup task is one that can replace any tasks in the bag

– For example, if [ram = 1GB, cpu = 1.0] and [ram = 10MB, cpu = 2.0, 
attrib = value] are in the bag, a backup task must at least have 
[ram = 1GB, cpu = 2.0, attrib = value]



Tasks



Task bags



Adding backup tasks



Probability of x tasks failing in a bag

• We want the probability distribution P(f = x), where f is the 
number of tasks to deschedule in a given task bag B

• Let's start by assuming that:

– No more than one task of bag B run on the same machine

– All tasks of bag B run on a given rack

• We'll remove these assumptions later



Failure probability for a rack

• Let Pr(f = x) be the probability that x tasks deschedule on rack r

• Let p(r) be the probability that rack r fails

• Let p(m|~r) be the probability the machine m fails but the rack r 
that has m has not

• Let R be the number of machines used by bag B in rack r

• We want to compute Pr(f = x) from p(r), p(m|~r), and R

• Pr(f > R) = 0

• Pr(f = R) = p(r) + p(~r)·PIr(f = R)

• Pr(f = x < R) = p(~r)·PIr(f =x)

• PIr(f = x) = Binomial(x, R, p(m|~r))



Two or more tasks in the same machine

• Change the computation PIr(f = x) to consider that each machine 
failing will bring down i tasks 

rack



Two or more tasks in the same machine

• Change the computation PIr(f = x) to consider that each machine 
failing will bring down i tasks 

rack



Two or more tasks in the same machine

• Change the computation PIr(f = x) to consider that each machine 
failing will bring down i tasks 

rack

i = 1
PIr

1
(f = 0)

PIr
1
(f = 1)

PIr
1
(f = 2)

i = 2
PIr

2
(f = 0)

PIr
2
(f = 2)

PIr
2
(f = 4)

PIr
2
(f = 6)

PIr
2
(f = 8)

PIr
2
(f = 10)

i = 3
PIr

3
(f = 0)

PIr
3
(f = 3)



Probability of x tasks failing in a bag

• Assuming that racks fail independently, we can just use 
convolutions to add Pr(f = x) up to P(f = x) 

• For example, Pr(f = [01]) = 0.5 and Ps(f = [02]) = 0.5 can be 
combined in P(f = [0123]) = 0.25



On assumptions and failure correlations

• Notice that we can use the same “trick” used for “sub-racks” to 
take into account any other failure correlation that we discover is 
important ...

• ... as well as to use different failure probabilities for different 
machines, racks, or whatever correlates failures



Example: failure probability of a given job



How come???

Machines 744
… with 1 task 32
… with 2 tasks 423
... with 3 tasks 48
... with 4 tasks 241
... with 5+ tasks 0



Bagging heuristic

• submission(S):
for each bag B:

if it is possible to find enough backups for S + B:
cost[B] = BackupCost(S + B) - BackupCost(B)

cost[ALONE] = BackupCost(S)
select the choice that gives the smallest cost and implement it

• Cost captures how many resources are used

• Our experiments showed improvement if we add a penalty for 
being creating a new bag

– cost[ALONE] = K * BackupCost(S)



Selecting a backup task

• The selection of backup task is risk-aware

– We first place a backup task in a new rack (to the bag)

– If there is no new rack, we place it on a new machine

– If there is no new machine, we then collocate it with a sibling

• We try to conserve “resource chunks” when we allocate backup 
tasks

– That is, we use best fit scheduling for placing backup tasks



Bagging performance

• In the bagging of 78,478 submissions

• Mean = 2.90s, median = 1.76s, max = 92.6s



Resource consumed by the backup tasks

• The aggregated memory reservation of backup tasks is 3.16% of 
the memory of real tasks



Conclusions

• Greater utilization creates descheduling risk

• We can manage the descheduling risk by strategically placing 
backup tasks

• This allows us to focus on utilization improvement measures 
without worrying about descheduling risk



Thanks!!!



JSSPP'2012

• In conjunction with IPDPS

• Shanghai, China, May 25, 2012

• Deadline: February 17, 2012


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

