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Problem

e Join two continuous streams of events
o Based on a shared id
o Stored in the Google File System
o Replicated in multiple datacenters
e Motivation:
o Join click with query

o Logged by multiple servers at different times
m Cannot put query inside the click

R © user
o &/
g4 \o S
g 3‘2@4’ %
77 N
N N Timeline
' v
Click Event
{click_id, query id, ... }
Click Event w Query info
Photon = {click_id, query_id,
i advertiser_id, ad text, ...}
Query Event
{query_id, advertiser_id,

ad text, ...}

Google Confidential and Proprietary



Google
Systems challenges

e Exactly-once semantics
o Output used for billing / internal monitoring
e Reliability
o Fault-tolerance in the cloud
o Automatically handle single data-center disaster
e Scalability
o Millions of joins per minute
e Latency
o O(seconds)
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Singly-homed system

e \With patched-on failover tool
o Ran in production for several years
e Very high maintenance cost
e Datacenters have downtimes:
o planned
o unplanned
o random hiccups
e Cannot provide very high up-time SLA
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How about running a MapReduce?

Read both query logs and click logs
Mapper output key is query id
Reducer outputs the joined event
Issues:

o batch job
o high latency (setup cost, stragglers, etc)
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Challenges of running in multiple datacenters

e Stateful system
o Need to ensure exactly-once semantics

e State needs to be replicated synchronously to multiple datacenters
o ==> Paxos (guarantees majority group members have all the updates)



Google

High-level idea
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e Run the pipeline in multiple data-centers in parallel:
o Each pipeline processes every event

e Paxos-backed storage is shared across pipelines

Used to dedup events (at-most-once semantics)
Maintain persistent state at event-level
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PaxosDB: key building block

e Key-value store built on top of raw Paxos
e Runs paxos algorithm to guarantee consistent replication
o Multi-row transactions with conditional updates
o Auto-elects new master
e Key challenge: scalability
o Need to join Millions of events/minute
o With cross-country replicas, less than 10 paxos transactions/sec
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Architecture of a single IdRegistry server
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|dRegistry made scalable: sharding

e Run paxos transactions in parallel for independent keys

RPC request1 RPC request?
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|dRegistry made scalable: server-side batching

e Batch multiple RPC requests into a single Paxos transaction

Batch multiple RPC
requests at server

RPC request 1, 2, 3 RPC request 4
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|dRegistry made scalable: client-side batching

e Batch multiple client requests into a single RPC

Batch multiple RPC
requests at server

Batch multiple client requests
into a single RPC

RPC request 4

RPC request 1, 2, 3
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|dRegistry made scalable

e Sharding
o Paxos transactions happen in parallel for each shard

o Load-balance amongst shards:

m Shard by hash(event_id) mod num_shards
o Built automated support for resharding

m Attach timestamp to each key

m Use timestamp-based sharding

m GC old keys

e Server-side batching
o RPC thread adds input request to an in-memory queue
o Single paxos thread extracts multiple requests, performs a single
multi-row paxos transaction, sends rpc response

e Client-side batching
o Client batches multiple RPC requests into a single RPC request.
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Photon architecture in a single data-center
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Photon architecture in muItiplge datacenters
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PaxosDB rpc semantics

e InsertKey:
o Returns false if the key already exists
o Else inserts the key
e \What if the PaxosDB inserts the key but Joiner does not get the
response in time?
o Observed 0.01% loss in production
e \Write unique id for joiner along with the event id:
o event idis key
o Joinerid is value
o Handles Joiner rpc retries gracefully
e If Joiner crashes after writing to Paxos, run offline recovery
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Reading input events continuously

e Events stored in Google File System

e Periodically stat the directory:
o identify new files
o check the growth update on existing files

e Keep track of <filename, next_read_offset>
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EventStore

e Sequentially read the query logs and store a mapping from
query_id to query
o In a distributed hash table (e.g. bigtable)
e CacheEventStore:
o Majority of clicks happen within few minutes of query
o Cache mapping from query_id ---> query for recent queries in RAM
o Use distributed Cache Servers (similar to MemCache)
e LogsEventStore
o Performance optimization since our query logs are sorted
o Fallback in case of cache miss
o Use binary search in sorted event stream in disks
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Purgatory (in Log Dispatcher)

e \What if a subset of query logs are delayed?
e Log Dispatcher reads every event from the log, keeps retrying until
successful join

o Maintains state in peristent storage (Google File System)
o Ensures at-least-once semantics

e Exponential backoff in case of failure
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Operational challenges

Need 24x7 running system

o Low maintenance
Volume of input traffic fluctuates by 2x within a day
Bursts of traffic in case of network issues

Predicting resource requirements
Auto-resize the jobs to handle traffic growth and spike
Reliable monitoring
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Production deployment

e System running in production for several months

O(700)-way sharded PaxosDB

5 PaxosDB replicas spread across East Coast, West Coast, Mid-West
2 Photon pipelines running in East Coast, West Coast

Order of magnitude higher uptime SLA than singly-homed system
Survived multiple planned / unplanned datacenter downtimes

Much less noisy alerts
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Photon withstanding a real datacenter disaster

Number of events joined by each Datacenter
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End-to-end latency of Photon
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Effectiveness of server-side batching in IdRegistry

| —— Without batching
— With batching
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|dRegistry dynamic time-based upsharding
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Dispatcher in one datacenter catching up after downtime

30X T T —r—TT T T
: : : ‘Events dropped (akeady exist in IdRegtstry) E—
Events sent to Joner

el R e e N M oo e oo e e
200 [ e e e jroseeees S e e e o]

T e e e o S e S E

Events per second

T e e S R S

N T e o

OX L " " L 1 " PR Y 2 L P P | " P P | P 2 P | PR PO Y
06:45 07:00 07:15 07:30 07:45 08:00 08:15 08:30 08:45
Time

Google Confidential and Proprietary



Google

Photon wasted joins minimized
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Photon EventStore lookups in a single datacenter
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How we addressed the systems challenges

e Exactly-once semantics
o PaxosDB ensures at-most-once
o Dispatcher retry ensures at-least-once
e Reliability
o PaxosDB needs only majority members to be up.
o Storing global state in PaxosDB allows run in multiple datacenters
e Scalability
o Reshard the number of PaxosDB servers
o All the other workers are stateless
e Latency
o Mostly RPC-based communication amongst jobs
o Most data transfers in RAM
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Next BIG challenges

e Better resource utilization
e Join multiple log sources
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More cool problems we are solving in AdWords Backend

e Real-time logs processing
o Read 100T logs per day
o Compute stats over 200+ dimensions with low latency
e Petabyte scale database storage engine
o 32M rows updated per sec, 140T total rows
o 200K read queries/sec with latency of 90ms
e Efficiently backfill stats for the last N years
o O(50B) rows per day
o Too big to store in a database
e And many more cool projects...
o Join us and find out more!
o Manpreet Singh (manpreet@google.com)



Google Application Process

Full-time: google.com/students/eng
n Apply Now!

Internships: google.com/students/intern

E Resume Review and Qualification

B First Round Interviews - 2 Technical Phone Screens

Full-time Positions: 3-5 Onsite Interviews
Internships: 1 Host Matching Interview

E Hiring Committee - Offer

Googler DO COOL THINGS THAT : MATTER
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Questions
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