Photon: fault-tolerant and
scalable joining of
Google continuous data streams

Manpreet (manpreet@google.com)

Google

Agenda

Problem and motivation
Systems challenges
Design

Production deployment
Future work

Google
The Stats Loop

queries, clicks

Aovertirs - Putshrs

accounts,
campaigns, re.p‘orts,
budgets blllmg,

ads

events

budgets, ...

[HourIyIDainlMontth sums\
of
Clicks, Impressions, Cost
... per ...
Advertiser, Publisher,
Keyword etc Y,

Continuously
aggregate logs

ontinuously
update stats

Google Confidential and Proprietary

Google
Problem

e Join two continuous streams of events
o Based on a shared id
o Stored in the Google File System
o Replicated in multiple datacenters
e Motivation:
o Join click with query

o Logged by multiple servers at different times
m Cannot put query inside the click

R © user
o &/
g4 \o S
g 3‘2@4’ %
77 N
N N Timeline
' v
Click Event
{click_id, query id, ... }
Click Event w Query info
Photon = {click_id, query_id,
i advertiser_id, ad text, ...}
Query Event
{query_id, advertiser_id,

ad text, ...}

Google Confidential and Proprietary

Google
Systems challenges

e Exactly-once semantics
o Output used for billing / internal monitoring
e Reliability
o Fault-tolerance in the cloud
o Automatically handle single data-center disaster
e Scalability
o Millions of joins per minute
e Latency
o O(seconds)

Google
Singly-homed system

e \With patched-on failover tool
o Ran in production for several years
e Very high maintenance cost
e Datacenters have downtimes:
o planned
o unplanned
o random hiccups
e Cannot provide very high up-time SLA

Google

How about running a MapReduce?

Read both query logs and click logs
Mapper output key is query id
Reducer outputs the joined event
Issues:

o batch job
o high latency (setup cost, stragglers, etc)

Google

Challenges of running in multiple datacenters

e Stateful system
o Need to ensure exactly-once semantics

e State needs to be replicated synchronously to multiple datacenters
o ==> Paxos (guarantees majority group members have all the updates)

Google

High-level idea

D(; n. I.'. DQ
\\\\\ Ex x ; fﬁ' Paxos
Pineline Paxos-backed
in DataCenter 1 sto rage

Pipeline
in DataCenter 2

e Run the pipeline in multiple data-centers in parallel:
o Each pipeline processes every event

e Paxos-backed storage is shared across pipelines

Used to dedup events (at-most-once semantics)
Maintain persistent state at event-level

©)

Google
PaxosDB: key building block

e Key-value store built on top of raw Paxos
e Runs paxos algorithm to guarantee consistent replication
o Multi-row transactions with conditional updates
o Auto-elects new master
e Key challenge: scalability
o Need to join Millions of events/minute
o With cross-country replicas, less than 10 paxos transactions/sec

- e

Google Confidential and Proprietary

Google

Architecture of a single IdRegistry server

IdRegistry Clients

]
1
: RPC handler | [RPC handler RPC handler
' thread 1 thread2 | =~~~ thread N
;
1
1
]
. Producers
1
]
' . In-memory queue
' Idgeglstry of client requests
. erver for server-side
; batching
]
E + Consumer
: Registry thread
. 3
; 4
; PaxosDB gault-tolerant key-value store)
]
Paxos : L
protocolc::a Fault-tolerant log
I
....... Sy o,
||File vo
Log

Google Confidential and Proprietary

Google

|dRegistry made scalable: sharding

e Run paxos transactions in parallel for independent keys

RPC request1 RPC request?

Google Confidential and Proprietary

Google

|dRegistry made scalable: server-side batching

e Batch multiple RPC requests into a single Paxos transaction

Batch multiple RPC
requests at server

RPC request 1, 2, 3 RPC request 4

Google Confidential and Proprietary

Google

|dRegistry made scalable: client-side batching

e Batch multiple client requests into a single RPC

Batch multiple RPC
requests at server

Batch multiple client requests
into a single RPC

RPC request 4

RPC request 1, 2, 3

Google Confidential and Proprietary

Google

|dRegistry made scalable

e Sharding
o Paxos transactions happen in parallel for each shard

o Load-balance amongst shards:

m Shard by hash(event_id) mod num_shards
o Built automated support for resharding

m Attach timestamp to each key

m Use timestamp-based sharding

m GC old keys

e Server-side batching
o RPC thread adds input request to an in-memory queue
o Single paxos thread extracts multiple requests, performs a single
multi-row paxos transaction, sends rpc response

e Client-side batching
o Client batches multiple RPC requests into a single RPC request.

Google

Photon architecture in a single data-center

_ " | Ret
Log Dispatcher
..

Step1
l Step2 click
«— _ Step3
EventStore [query id Joiner
query
lStep4

Google Confidential and Proprietary

Google

Photon architecture in muItiplge datacenters

DataCenter 1 : DataCenter 2
_ " | Ret : Retry [
EventStore Log Dispatcher : Log Dispatcher EventStore

v i <
.

L ——
[t |

Google Confidential and Proprietary

Google

PaxosDB rpc semantics

e InsertKey:
o Returns false if the key already exists
o Else inserts the key
e \What if the PaxosDB inserts the key but Joiner does not get the
response in time?
o Observed 0.01% loss in production
e \Write unique id for joiner along with the event id:
o event idis key
o Joinerid is value
o Handles Joiner rpc retries gracefully
e If Joiner crashes after writing to Paxos, run offline recovery

Google

Reading input events continuously

e Events stored in Google File System

e Periodically stat the directory:
o identify new files
o check the growth update on existing files

e Keep track of <filename, next_read_offset>

Google

EventStore

e Sequentially read the query logs and store a mapping from
query_id to query
o In a distributed hash table (e.g. bigtable)
e CacheEventStore:
o Majority of clicks happen within few minutes of query
o Cache mapping from query_id ---> query for recent queries in RAM
o Use distributed Cache Servers (similar to MemCache)
e LogsEventStore
o Performance optimization since our query logs are sorted
o Fallback in case of cache miss
o Use binary search in sorted event stream in disks

Google
Purgatory (in Log Dispatcher)

e \What if a subset of query logs are delayed?
e Log Dispatcher reads every event from the log, keeps retrying until
successful join

o Maintains state in peristent storage (Google File System)
o Ensures at-least-once semantics

e Exponential backoff in case of failure

Google

Operational challenges

Need 24x7 running system

o Low maintenance
Volume of input traffic fluctuates by 2x within a day
Bursts of traffic in case of network issues

Predicting resource requirements
Auto-resize the jobs to handle traffic growth and spike
Reliable monitoring

Google
Production deployment

e System running in production for several months

O(700)-way sharded PaxosDB

5 PaxosDB replicas spread across East Coast, West Coast, Mid-West
2 Photon pipelines running in East Coast, West Coast

Order of magnitude higher uptime SLA than singly-homed system
Survived multiple planned / unplanned datacenter downtimes

Much less noisy alerts

O O 0O O O O

Google

Photon withstanding a real datacenter disaster

Number of events joined by each Datacenter

X7 "L * "I *""*"L*™"*"I" T T T T T T T
Datacenterl + Datacenter2 : :
Datacenter 1 : ‘

4x - = Dz_atacentgr 2 S Shi S SREEEEE CEEEEEEEISEEEEEEI EEEEEREEEERE | i &

12x kot e ..

wox A Wk A Wke LAAM :

T L ik

B6x T’,) TR """"" S TR 1 I S R T M |G | | R N

| '.,| . bi : : u
sk O R o Lt
2x e c c e e e e e ccssjecccccsspeccccsssesssssssnsssfleccsnslecnscscssbheccccccciccccccccedoeccccccloecccccsccloccccccchae g

12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00

Time

Google Confidential and Proprietary

Google

End-to-end latency of Photon

f ' : Joined Logs

|9 pRUCRELILELLCIEERLED R RRREEEEEEEEEEE Jensnesnckaancaacenancas §ommannesaccaadbaracanac: P .
B SUSU— SOS— T
2 : : : :
8 .
B g2 | R -
j =
>
E B (0 1 i (et ettt e Aty A (i e N
Jo
% 8 T 17 1 I e e e T e -
C
Q
[| |
z o [.
b
o
O\ 4 I I T T L I T T T —

2 I I I I I T T T T T T I T T I I L LI I I T -

0 1 1 M 1 1

Oct 20 Oct 27 Nov 03 Nov 10

Google Confidential and Proprietary

Google

Effectiveness of server-side batching in IdRegistry

| —— Without batching
— With batching

Number of requests to a single IdReqistry shard per second
INJ
o
o

Time

Google Confidential and Proprietary

Google
|dRegistry dynamic time-based upsharding

1.6G T T T T
Shard# 0
: : ; Shard# 90 (newly added)
4G N RS S Wi e e a8 -
B N R S
LOG N e S B -

T] e MO e e -

IdRegistry Size

T] s I NG e :

T] e R e e :

2000M |- R e R P R . .

0.0 P B i T R R -
ThuOOOO Fri00:00 Sat00:00 Sun 00:00 Mon 00:00 Tue 00:00 Wed 00:00 ThuOOC

Time

Google Confidential and Proprietary

Google

Dispatcher in one datacenter catching up after downtime

30X T T —r—TT T T
: : : ‘Events dropped (akeady exist in IdRegtstry) E—
Events sent to Joner

el R e e N M oo e oo e e
200 [e e e jroseeees S e e e o]

T e e e o S e S E

Events per second

T e e S R S

N T e o

OX L " " L 1 " PR Y 2 L P P | " P P | P 2 P | PR PO Y
06:45 07:00 07:15 07:30 07:45 08:00 08:15 08:30 08:45
Time

Google Confidential and Proprietary

Google

Photon wasted joins minimized

20x

15x

Number of events processed per second
-
g Q

Ox

Total number of jc;inéd'ev'en'ts '
Wasted in DC1
Wasted in DC2

Time

Google Confidential and Proprietary

Google

Photon EventStore lookups in a single datacenter

7X LANL A B S S B B S B B S S S B S S B S R B S HE S 5 A S B S S B S S B S S p
‘ ' ' ' ' ' ' ' Cache Server
Logs Event Store |

=<
I
—>
L
1 8
r
r
L
L
1

Number of EventStore lookups per second

Ox
20:00 00:00 04:00 08:00 12:00 16:00 20:00 00:00 04:00 08:00 12:00 16:00
Time

Google Confidential and Proprietary

Google
How we addressed the systems challenges

e Exactly-once semantics
o PaxosDB ensures at-most-once
o Dispatcher retry ensures at-least-once
e Reliability
o PaxosDB needs only majority members to be up.
o Storing global state in PaxosDB allows run in multiple datacenters
e Scalability
o Reshard the number of PaxosDB servers
o All the other workers are stateless
e Latency
o Mostly RPC-based communication amongst jobs
o Most data transfers in RAM

Google
Next BIG challenges

e Better resource utilization
e Join multiple log sources

Google

More cool problems we are solving in AdWords Backend

e Real-time logs processing
o Read 100T logs per day
o Compute stats over 200+ dimensions with low latency
e Petabyte scale database storage engine
o 32M rows updated per sec, 140T total rows
o 200K read queries/sec with latency of 90ms
e Efficiently backfill stats for the last N years
o O(50B) rows per day
o Too big to store in a database
e And many more cool projects...
o Join us and find out more!
o Manpreet Singh (manpreet@google.com)

Google Application Process

Full-time: google.com/students/eng
n Apply Now!

Internships: google.com/students/intern

E Resume Review and Qualification

B First Round Interviews - 2 Technical Phone Screens

Full-time Positions: 3-5 Onsite Interviews
Internships: 1 Host Matching Interview

E Hiring Committee - Offer

Googler DO COOL THINGS THAT : MATTER

Google

Questions

Google Confidential and Proprietary

