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Agenda

● Problem and motivation
● Systems challenges
● Design
● Production deployment
● Future work
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Problem

● Join two continuous streams of events
○ Based on a shared id
○ Stored in the Google File System
○ Replicated in multiple datacenters

● Motivation:
○ Join click with query
○ Logged by multiple servers at different times

■ Cannot put query inside the click
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Systems challenges

● Exactly-once semantics
○ Output used for billing / internal monitoring

● Reliability
○ Fault-tolerance in the cloud
○ Automatically handle single data-center disaster

● Scalability
○ Millions of joins per minute

● Latency
○ O(seconds)
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Singly-homed system

● With patched-on failover tool
○ Ran in production for several years

● Very high maintenance cost
● Datacenters have downtimes:

○ planned
○ unplanned
○ random hiccups

● Cannot provide very high up-time SLA
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How about running a MapReduce?

● Read both query logs and click logs
● Mapper output key is query_id
● Reducer outputs the joined event
● Issues:

○ batch job
○ high latency (setup cost, stragglers, etc)
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Challenges of running in multiple datacenters

● Stateful system
○ Need to ensure exactly-once semantics

● State needs to be replicated synchronously to multiple datacenters
○ ==> Paxos (guarantees majority group members have all the updates)
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High-level idea

Paxos-backed 
storage

Pipeline
in DataCenter 2

DC
DCB DCE

Paxos
A

Pipeline
in DataCenter 1

● Run the pipeline in multiple data-centers in parallel:
○ Each pipeline processes every event

● Paxos-backed storage is shared across pipelines
○ Used to dedup events (at-most-once semantics)
○ Maintain persistent state at event-level
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PaxosDB: key building block

● Key-value store built on top of raw Paxos
● Runs paxos algorithm to guarantee consistent replication

○ Multi-row transactions with conditional updates
○ Auto-elects new master

● Key challenge: scalability
○ Need to join Millions of events/minute
○ With cross-country replicas, less than 10 paxos transactions/sec
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PaxosDB library

RPC client
RPC request

DC
DCB DCE
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Architecture of a single IdRegistry server
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IdRegistry made scalable: sharding

● Run paxos transactions in parallel for independent keys
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IdRegistry made scalable: server-side batching

● Batch multiple RPC requests into a single Paxos transaction
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IdRegistry made scalable: client-side batching

● Batch multiple client requests into a single RPC
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IdRegistry made scalable

● Sharding
○ Paxos transactions happen in parallel for each shard
○ Load-balance amongst shards:

■ Shard by hash(event_id) mod num_shards
○ Built automated support for resharding

■ Attach timestamp to each key
■ Use timestamp-based sharding
■ GC old keys

● Server-side batching
○ RPC thread adds input request to an in-memory queue
○ Single paxos thread extracts multiple requests, performs a single 

multi-row paxos transaction, sends rpc response

● Client-side batching
○ Client batches multiple RPC requests into a single RPC request.
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Photon architecture in multiple datacenters
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PaxosDB rpc semantics

● InsertKey:
○ Returns false if the key already exists
○ Else inserts the key

● What if the PaxosDB inserts the key but Joiner does not get the 
response in time?
○ Observed 0.01% loss in production

● Write unique id for joiner along with the event_id:
○ event_id is key
○ Joiner id is value
○ Handles Joiner rpc retries gracefully

● If Joiner crashes after writing to Paxos, run offline recovery
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Reading input events continuously

● Events stored in Google File System
● Periodically stat the directory:

○ identify new files
○ check the growth update on existing files

● Keep track of <filename, next_read_offset>
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EventStore

● Sequentially read the query logs and store a mapping from 
query_id to query
○ In a distributed hash table (e.g. bigtable)

● CacheEventStore:
○ Majority of clicks happen within few minutes of query
○ Cache mapping from query_id ---> query for recent queries in RAM
○ Use distributed Cache Servers (similar to MemCache)

● LogsEventStore
○ Performance optimization since our query logs are sorted
○ Fallback in case of cache miss
○ Use binary search in sorted event stream in disks
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Purgatory (in Log Dispatcher)

● What if a subset of query logs are delayed?
● Log Dispatcher reads every event from the log, keeps retrying until 

successful join
○ Maintains state in peristent storage (Google File System)
○ Ensures at-least-once semantics

● Exponential backoff in case of failure
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Operational challenges

● Need 24x7 running system
○ Low maintenance

● Volume of input traffic fluctuates by 2x within a day
● Bursts of traffic in case of network issues
● Predicting resource requirements
● Auto-resize the jobs to handle traffic growth and spike
● Reliable monitoring
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Production deployment

● System running in production for several months
○ O(700)-way sharded PaxosDB
○ 5 PaxosDB replicas spread across East Coast, West Coast, Mid-West
○ 2 Photon pipelines running in East Coast, West Coast
○ Order of magnitude higher uptime SLA than singly-homed system
○ Survived multiple planned / unplanned datacenter downtimes
○ Much less noisy alerts
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Photon withstanding a real datacenter disaster
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End-to-end latency of Photon
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Effectiveness of server-side batching in IdRegistry
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IdRegistry dynamic time-based upsharding
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Dispatcher in one datacenter catching up after downtime
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Photon wasted joins minimized
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Photon EventStore lookups in a single datacenter
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How we addressed the systems challenges

● Exactly-once semantics
○ PaxosDB ensures at-most-once
○ Dispatcher retry ensures at-least-once

● Reliability
○ PaxosDB needs only majority members to be up.
○ Storing global state in PaxosDB allows run in multiple datacenters

● Scalability
○ Reshard the number of PaxosDB servers
○ All the other workers are stateless

● Latency
○ Mostly RPC-based communication amongst jobs
○ Most data transfers in RAM
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Next BIG challenges

● Better resource utilization
● Join multiple log sources
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More cool problems we are solving in AdWords Backend

● Real-time logs processing
○ Read 100T logs per day
○ Compute stats over 200+ dimensions with low latency

● Petabyte scale database storage engine
○ 32M rows updated per sec, 140T total rows
○ 200K read queries/sec with latency of 90ms

● Efficiently backfill stats for the last N years
○ O(50B) rows per day
○ Too big to store in a database

● And many more cool projects...
○ Join us and find out more!
○ Manpreet Singh (manpreet@google.com)
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Questions


