
Google Confidential and Proprietary

Photon: fault-tolerant and 
scalable joining of 
continuous data streams

Manpreet (manpreet@google.com)



Google Confidential and Proprietary

Agenda

● Problem and motivation
● Systems challenges
● Design
● Production deployment
● Future work



Google Confidential and Proprietary

The Stats Loop

Ads Serving

Stats Engine

Logs Persistent 
Storage

Users on Google.com Advertisers + Publishers

queries, clicks ads
accounts, 
campaigns,
budgets

events

reports, 
billing, 
…

Ads inventory, 
budgets, …

Continuously 
update stats

Continuously 
aggregate logs

Hourly/Daily/Monthly sums 
of

Clicks, Impressions, Cost
… per …

Advertiser, Publisher, 
Keyword etc



Google Confidential and Proprietary

Problem

● Join two continuous streams of events
○ Based on a shared id
○ Stored in the Google File System
○ Replicated in multiple datacenters

● Motivation:
○ Join click with query
○ Logged by multiple servers at different times

■ Cannot put query inside the click



Google Confidential and Proprietary

Systems challenges

● Exactly-once semantics
○ Output used for billing / internal monitoring

● Reliability
○ Fault-tolerance in the cloud
○ Automatically handle single data-center disaster

● Scalability
○ Millions of joins per minute

● Latency
○ O(seconds)



Google Confidential and Proprietary

Singly-homed system

● With patched-on failover tool
○ Ran in production for several years

● Very high maintenance cost
● Datacenters have downtimes:

○ planned
○ unplanned
○ random hiccups

● Cannot provide very high up-time SLA



Google Confidential and Proprietary

How about running a MapReduce?

● Read both query logs and click logs
● Mapper output key is query_id
● Reducer outputs the joined event
● Issues:

○ batch job
○ high latency (setup cost, stragglers, etc)



Google Confidential and Proprietary

Challenges of running in multiple datacenters

● Stateful system
○ Need to ensure exactly-once semantics

● State needs to be replicated synchronously to multiple datacenters
○ ==> Paxos (guarantees majority group members have all the updates)



Google Confidential and Proprietary

High-level idea

Paxos-backed 
storage

Pipeline
in DataCenter 2

DC
DCB DCE

Paxos
A

Pipeline
in DataCenter 1

● Run the pipeline in multiple data-centers in parallel:
○ Each pipeline processes every event

● Paxos-backed storage is shared across pipelines
○ Used to dedup events (at-most-once semantics)
○ Maintain persistent state at event-level



Google Confidential and Proprietary

PaxosDB: key building block

● Key-value store built on top of raw Paxos
● Runs paxos algorithm to guarantee consistent replication

○ Multi-row transactions with conditional updates
○ Auto-elects new master

● Key challenge: scalability
○ Need to join Millions of events/minute
○ With cross-country replicas, less than 10 paxos transactions/sec

RPC server

PaxosDB library

RPC client
RPC request

DC
DCB DCE

Paxos
A



Google Confidential and Proprietary

Architecture of a single IdRegistry server



Google Confidential and Proprietary

IdRegistry made scalable: sharding

● Run paxos transactions in parallel for independent keys

RPC server

PaxosDB library

RPC client

RPC request1

DC
DCB DCE

Paxos
A

RPC server

PaxosDB library

DC
DCB DCE

Paxos
A

RPC request2



Google Confidential and Proprietary

IdRegistry made scalable: server-side batching

● Batch multiple RPC requests into a single Paxos transaction

RPC server

PaxosDB library

RPC client

RPC request 1, 2, 3

DC
DCB DCE

Paxos
A

RPC server

PaxosDB library

DC
DCB DCE

Paxos
A

RPC request 4

Batch multiple RPC 
requests at server



Google Confidential and Proprietary

IdRegistry made scalable: client-side batching

● Batch multiple client requests into a single RPC

RPC server

PaxosDB library

RPC client

RPC request 1, 2, 3

DC
DCB DCE

Paxos
A

RPC server

PaxosDB library

DC
DCB DCE

Paxos
A

RPC request 4

Batch multiple RPC 
requests at server

Batch multiple client requests 
into a single RPC



Google Confidential and Proprietary

IdRegistry made scalable

● Sharding
○ Paxos transactions happen in parallel for each shard
○ Load-balance amongst shards:

■ Shard by hash(event_id) mod num_shards
○ Built automated support for resharding

■ Attach timestamp to each key
■ Use timestamp-based sharding
■ GC old keys

● Server-side batching
○ RPC thread adds input request to an in-memory queue
○ Single paxos thread extracts multiple requests, performs a single 

multi-row paxos transaction, sends rpc response

● Client-side batching
○ Client batches multiple RPC requests into a single RPC request.



Google Confidential and Proprietary

JoinerEventStore Paxos-based 
IdRegistry

Joined Click Logs

Query Logs
Log Dispatcher

Click Logs

Retry

query_id
query

click

Photon architecture in a single data-center

Step1

Step2
Step3

Step4



Google Confidential and Proprietary

Photon architecture in multiple datacenters

Joiner

EventStore

Paxos-based 
IdRegistry

Joiner

Joined Click LogsJoined Click Logs

Query Logs

DataCenter 1 DataCenter 2

Log Dispatcher

Click Logs

Log Dispatcher

Click Logs

EventStore

Query Logs

Retry Retry



Google Confidential and Proprietary

PaxosDB rpc semantics

● InsertKey:
○ Returns false if the key already exists
○ Else inserts the key

● What if the PaxosDB inserts the key but Joiner does not get the 
response in time?
○ Observed 0.01% loss in production

● Write unique id for joiner along with the event_id:
○ event_id is key
○ Joiner id is value
○ Handles Joiner rpc retries gracefully

● If Joiner crashes after writing to Paxos, run offline recovery



Google Confidential and Proprietary

Reading input events continuously

● Events stored in Google File System
● Periodically stat the directory:

○ identify new files
○ check the growth update on existing files

● Keep track of <filename, next_read_offset>



Google Confidential and Proprietary

EventStore

● Sequentially read the query logs and store a mapping from 
query_id to query
○ In a distributed hash table (e.g. bigtable)

● CacheEventStore:
○ Majority of clicks happen within few minutes of query
○ Cache mapping from query_id ---> query for recent queries in RAM
○ Use distributed Cache Servers (similar to MemCache)

● LogsEventStore
○ Performance optimization since our query logs are sorted
○ Fallback in case of cache miss
○ Use binary search in sorted event stream in disks



Google Confidential and Proprietary

Purgatory (in Log Dispatcher)

● What if a subset of query logs are delayed?
● Log Dispatcher reads every event from the log, keeps retrying until 

successful join
○ Maintains state in peristent storage (Google File System)
○ Ensures at-least-once semantics

● Exponential backoff in case of failure



Google Confidential and Proprietary

Operational challenges

● Need 24x7 running system
○ Low maintenance

● Volume of input traffic fluctuates by 2x within a day
● Bursts of traffic in case of network issues
● Predicting resource requirements
● Auto-resize the jobs to handle traffic growth and spike
● Reliable monitoring



Google Confidential and Proprietary

Production deployment

● System running in production for several months
○ O(700)-way sharded PaxosDB
○ 5 PaxosDB replicas spread across East Coast, West Coast, Mid-West
○ 2 Photon pipelines running in East Coast, West Coast
○ Order of magnitude higher uptime SLA than singly-homed system
○ Survived multiple planned / unplanned datacenter downtimes
○ Much less noisy alerts



Google Confidential and Proprietary

Photon withstanding a real datacenter disaster



Google Confidential and Proprietary

End-to-end latency of Photon



Google Confidential and Proprietary

Effectiveness of server-side batching in IdRegistry



Google Confidential and Proprietary

IdRegistry dynamic time-based upsharding



Google Confidential and Proprietary

Dispatcher in one datacenter catching up after downtime



Google Confidential and Proprietary

Photon wasted joins minimized



Google Confidential and Proprietary

Photon EventStore lookups in a single datacenter



Google Confidential and Proprietary

How we addressed the systems challenges

● Exactly-once semantics
○ PaxosDB ensures at-most-once
○ Dispatcher retry ensures at-least-once

● Reliability
○ PaxosDB needs only majority members to be up.
○ Storing global state in PaxosDB allows run in multiple datacenters

● Scalability
○ Reshard the number of PaxosDB servers
○ All the other workers are stateless

● Latency
○ Mostly RPC-based communication amongst jobs
○ Most data transfers in RAM



Google Confidential and Proprietary

Next BIG challenges

● Better resource utilization
● Join multiple log sources



Google Confidential and Proprietary

More cool problems we are solving in AdWords Backend

● Real-time logs processing
○ Read 100T logs per day
○ Compute stats over 200+ dimensions with low latency

● Petabyte scale database storage engine
○ 32M rows updated per sec, 140T total rows
○ 200K read queries/sec with latency of 90ms

● Efficiently backfill stats for the last N years
○ O(50B) rows per day
○ Too big to store in a database

● And many more cool projects...
○ Join us and find out more!
○ Manpreet Singh (manpreet@google.com)



Google Application Process

1

2 Resume Review and Qualification

3 First Round Interviews - 2 Technical Phone Screens

4 Full-time Positions: 3-5 Onsite Interviews
Internships: 1 Host Matching Interview

5 Hiring Committee - Offer

Apply Now! Full-time: google.com/students/eng

Internships: google.com/students/intern



Google Confidential and Proprietary

Questions


